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ABSTRACT 
 

The nature of students’ ideas about the scientific practices used by astronomers when studying objects in our Solar 
System is of widespread interest to discipline-based astronomy education researchers.  A sample of middle-school, 
high-school, and college students (N=42) in the U.S. were interviewed about how astronomers were able to learn 
about properties of the Solar System as a follow-up question after specific questions about the nature of the Solar 
System and its objects.  These students often held naive ideas about the practices of astronomy, and 19% of them 
proposed that humans or robots have returned samples of the planets to Earth for analysis.  While the college students 
provided more sophisticated responses to the questions than the younger students, we found that even they held naive 
ideas about human sample return and infrequently appealed to studying objects at a distance using telescopes.  We 
propose that students are not receiving specific instruction that allows them to investigate the tools and practices of 
astronomy, which leads them to rely on their prior knowledge about science practices in other disciplines (e.g., 
geoscience) when queried about how scientists study the Solar System.  This result implies that instruction around the 
limits of human and robotic spaceflight is needed to allow students to have a more scientific understanding of the 
practices of astronomy in studying the Solar System. 
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he National Research Council’s Framework for K-12 Science Education Framework (NRC, 2012) 
recommends science teaching be organized around big ideas in a way that also integrates student 
engagement in scientific practices. Studies like those by Kesidou and Roseman (2002) consistently 

suggest that most science teaching does not follow these recommendations; students are instead asked to memorize 
facts and study phenomena without enough support to see how these may be related.  The Framework offers a potential 
solution by presenting a vision for science education organized around three dimensions: 1) Scientific and Engineering 
Practices, 2) Crosscutting Concepts, and 3) Disciplinary Core Ideas.  More importantly, it emphasizes that these three 
dimensions must be integrated as this best reflects the nature of the scientific discipline.  That is, the emphasis is on 
students participating in investigations that are designed to both reveal the content knowledge of a discipline while 
simultaneously engaging students in the practices of the discipline under study.  The practices of scientists in a 
particular discipline area (e.g., astronomy) can vary dramatically from those in other areas (e.g., physics). Therefore, 
students without any foundation in the practices of a particular discipline will be limited in the extent to which they 
can rely on their experience with the practices of a more familiar discipline to help them reason out the answer to a 
problem in a less familiar discipline. Thus, the Framework stresses how engagement in scientific practices is part of 
the progression of learning in every discipline; using scientific practices to perform investigations throughout the K-
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12 curriculum will allow students to delve more deeply into science at higher grade levels than they otherwise would 
without direct experience with those practices.  
 
Songer and Gotwals (2012) investigated methods of assessing student learning in a way that fuses core content ideas 
and science practices in biodiversity.  They emphasize that standards documents are often written with the core ideas 
and practices listed as separate standards.  This approach leads to instruction and assessment of these to also be 
separated, even though the emphasis in the standards documents is on the fusion of these in modern science instruction.  
Songer and Gotwals note that, other than their work in biodiversity, there have been few studies of the fusion of core 
content ideas and science practices in a particular content domain.  And despite many domain-general characteristics 
of science practices, students’ ability to use science practices are often domain-specific, through their dependence on 
domain-specific prior knowledge (Eberbach & Crowley, 2009; NRC, 2007).  Therefore, we set out to begin to fill this 
gap by assessing students’ ideas at the intersection between content and practice in the domain of astronomy.   
 
Practices of Science in Astronomy  
 
Astronomy is primarily an observational science (in contrast to an experimental science) that often requires the use of 
telescopes to observe objects at immense distances to gather evidence to support scientific claims.  Prior research has 
shown that the linear, step-by-step presentation of the scientific method presented in most textbooks differs 
dramatically from how scientists describe their methods (e.g., Reiff, Harwood, & Phillips 2002); further, Lowman 
(2002) makes the argument that astronomy, as a primarily observational science, strongly deviates from the norms 
expected by many K-12 classroom teachers more familiar with the experimental methods used in other disciplines. 
For example, astronomers are unable to set up experiments with controls and to vary a single variable, but must instead 
observe the experiments that the Universe has set up through the natural evolution of astronomical objects and systems.  
Thus, astronomical investigations often look nothing like a typical chemistry experiment, for example, which can lead 
to challenges in designing curricula that accurately reflect how astronomy is practiced. 
 
Professional astronomers make use of a variety of instruments to make their observations, including enormous ground-
based telescopes with apertures of 10 meters or more, sophisticated space-based telescopes like the Hubble Space 
Telescope, and special purpose ground-based or space-based telescopes that make use of an invisible part of the 
electromagnetic spectrum such as radio waves, infrared, or gamma-rays.  In our teaching, we have had students 
describe their picture of an astronomer as a person peering through a small telescope with their eye; however, all 
modern research instruments use advanced digital detectors (which are essentially just sophisticated cameras) to record 
data for later quantitative analysis by computers, rather than by eye.   
 
Because objects within our own Solar System are within the reach of our space travel technology, we are able to study 
these objects in more detail than we can just with telescopes alone.  Astronomers who study the Solar System, known 
as planetary scientists, make use of robotic orbiters and landers that are sent directly to other worlds for more detailed 
measurements of these objects to supplement what we can learn about them from Earth-based or space-based (but still 
Earth-orbiting) telescopes.  Planetary scientists are also able to investigate questions about the Solar System directly 
by analyzing meteorites, including lunar and Martian meteorites, which can be studied in great detail in Earth-based 
laboratories.  Astronomers who study the Sun are referred to as heliophysicists, and their practices overlap 
significantly with those of planetary scientists. On the other hand, astronomers who study more distant objects, such 
as stars and galaxies, have no choice but to only use telescopes to study their targets.  This difference in scientific 
methodology, based on the difference in distance between the objects they study, is part of the reason planetary 
scientists are unique in the field of astronomy.  An example of this difference is illustrated by Figure 1, which contrasts 
the best image of Pluto as seen from the Hubble Space Telescope with an image of Pluto taken from the New Horizons 
flyby mission; there are many more types of scientific questions about the nature of Pluto that can be undertaken with 
the New Horizons data than the Hubble data, although both are quite valuable scientifically.  



    

   

Figure 1.  Image of Pluto and several of its moons as observed by the Hubble Space Telescope (left panel; credit: NASA, ESA, H. 
Weaver (JHU/APL), A. Stern (SwRI), and the HST Pluto Companion Search Team) compared to a much higher resolution image 
of part of Pluto’s surface as observed by the New Horizons flyby mission (right panel; credit:  NASA/Johns Hopkins University 
Applied Physics Laboratory/Southwest Research Institute). 

 

 
 
 
These complexities in what it means to carry out astronomical research suggest two areas of potential challenge for 
student understanding.  First, research on students’ ideas about astronomical scales has direct implications for our 
study of their understanding of astronomical practices (e.g., Miller & Brewer 2010).  Students who dramatically 
underestimate the distances to the stars will not see the need for different methods of investigating stars if they believe 
they are just as easy to reach as the planets in our Solar System.  Second, the practice of using both ground-based and 
space-based telescopes to obtain images is complicated; yet, many students have experience simply retrieving these 
images from the internet without needing to understand how a telescope and camera (or other astronomical detector) 
were used to obtain them in the first place.    
 
The research work of a professional astronomer who uses the tools and techniques discussed above maps well onto 
the “Practices for K-12 Science Classrooms” in the Framework.  In the research we describe here, we are focusing in 
particular on just two of these practices:  (1) how astronomers plan and carry out their investigations and (2) how they 
analyze and interpret their data.  Astronomers have to carefully plan investigations to take the most efficient advantage 
of limited telescope resources.  Telescopes and computer models create data sets that are analyzed for months or years 
to provide evidence that addresses the research questions being investigated.  The Next Generation Science Standards 
(NGSS; NGSS Lead States, 2013) proposes that students as young as the middle-school students in our sample are 
expected to learn these practices.  The NGSS includes Earth and Space Science standard MS-ESS1-3, which is: 
“Analyze and interpret data to determine scale properties of objects in the Solar System”.  They further clarify this 
with the statement, “Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and 
spacecraft to determine similarities and differences among Solar System objects.”   
 
Student Ideas and Opportunities for Learning 
 
There is some evidence suggesting students see the practices of astronomy differently than the practices of other 
sciences (e.g., Brickhouse et al., 2002) and, in particular, that they find the claims of astronomy less believable than 
biology, for example. In the Brickhouse and colleagues’ (2002) study, U.S. college students taking an astronomy 
course for non-majors expressed skepticism about astronomical claims because of the methods used to collect 
astronomical data on objects at a distance and the inherent uncertainties involved in studying objects that can never 
be physically manipulated in a laboratory. While students’ experience using scientific equipment to make 
measurements varies widely, in our experience students have far less exposure to investigations that expose them to 
the practices of astronomy than they do performing biology, chemistry, or physics experiments. Furthermore, in most 
U.S. K-12 curricula, these three disciplines receive far more instructional time than astronomy.  
 



    

   

Although there are opportunities for middle- and high-school students to engage directly in astronomical research 
using data from modern observatories, e.g., the NITARP program (Deeb et al., 2015) and Advanced Astronomy Camp 
(Fields 2009), this is incredibly rare in U.S. classrooms.  Instead, students either get no direct access to a telescope 
during their study of astronomy, or they may have the opportunity to spend a minute or so looking through an eyepiece 
of a small telescope at a bright object like the Moon or Jupiter.  Thus, few students are experiencing the type of 
astronomy instruction recommended by the Framework, where they would be directly engaging in a critical aspect of 
the practices of astronomy while studying this content area. Although rare, there have been a number of small, local 
projects, as well as projects with a more national scope, designed to give students more exposure to telescopes.  These 
often make use of robotic telescopes in distant locations (viz., e.g., Sadler et al., 2001, Gehret et al., 2004, Camacho 
et al., 2009), which allows students to have the opportunity to collect data from a location where it is nighttime while 
they are in school during normal daytime hours.  There have also been efforts, such as Project CLEA (Marschall et 
al., 2000), to create very realistic simulators to allow students to simulate the experience of obtaining their own 
astronomical observations from a research grade observatory.  However, these instructional opportunities have not 
been examined in ways that would reveal students’ understanding of the practices of science used by astronomers. 
 
Much of the literature that exists on K-12 student use of telescopes provides information on how these systems are 
created or adapted for ease of student use (e.g., Hoban et al., 2006), or how exposure to real astronomical telescopes 
may improve attitudes towards science (e.g., Ferlet & Pennypacker 2006).  Some authors discuss how telescope use 
appears to influence student learning (Gehret et al., 2004).  Gould and colleagues (2006) did a quantitative analysis of 
students’ performance on the Project STAR Astronomical Concept Inventory before and after their use of the 
MicroObservatory telescopes.  They saw improvement in student understanding of concepts related to light and size 
and scale, which were emphasized in the investigations students performed as part of the MicroObservatory 
curriculum. Yet, their results did not illuminate how this experience improved students’ understanding of astronomical 
practices.  Overall, there has been little research on how to support students in learning these practices of astronomy, 
whether it is through direct, remote, or simulated use of telescopes as part of an astronomy curriculum (Gershun, 
Slater, & Berryhill, 2014; Slater et al., 2014).  Further, we did not find any prior studies that provide an in depth 
description of student understanding of the practices of astronomy, which is an important first step before looking at 
how engagement in these practices supports student learning of the fusion of astronomy practices with astronomy 
content. 
 
Many K-12 astronomy curricula and state standards documents emphasize Solar System astronomy (Palen & Proctor, 
2006).  Given the gap we identified in the literature around astronomical practices and the widespread focus on Solar 
System phenomena in K-12 classes, our study was guided by the following research question: What are students' ideas 
about the scientific practices used by astronomers in their study of the properties of objects that make up the Solar 
System?   
 

METHODS 
 

This work is part of a larger empirical study of student learning of Solar System Astronomy.  In a previous part of this 
study, we collected student interviews to create a hypothetical learning progression in Solar System astronomy 
(Plummer et al., 2015).  The current study makes use of student responses that were not analyzed in that previous 
publication. Students in middle school (6th grade; n=18), high school (9th – 12th grade; n=18), and college (n=6) from 
urban, suburban, and rural locations in Pennsylvania were interviewed (N=42)1. The middle and high school students 
were selected randomly, and no effort was made to pick students who had recent or ongoing astronomy instruction.  
On the other hand, the college students were selected from students who had completed an introductory astronomy 
course to include a subsample of students who had specific prior experience with astronomy instruction, and could 
therefore provide us with more sophisticated answers to compare to those of the younger students in the study. 
  

																																																													
1 In the Plummer et al. (2015) study, the sample size was reported as N=44.  However, two of the students in that study were asked only astronomy 
content questions and were not asked the questions about science practices necessary to address this research question, so their responses were not 
analyzed in this study.	



    

   

The open-ended interview protocol engaged students in describing the current structure and motion of objects in the 
Solar System, formation of the Solar System, and gravity (analyzed for Plummer et al., 2015).  All of the questions 
analyzed in this study are summarized below in Table 1.  The questions listed in Table 1 are the top-level questions 
that were posed to the student.  After the student provided an answer, if they had not already explicitly addressed this 
in their response, the interviewer followed up with the question “What did scientists see or measure to figure that 
out?” or a close variation of that wording.  Some of the questions in the table presuppose that the student provided a 
normative answer, such as question 2 about the motion of the moon and question 5 about the flatness of the Solar 
System.  However, if the student did not provide a normative answer, we would provide them some guidance about 
the normative answers by saying something similar to “Experts have said that the Solar System is flat, have you heard 
that before?”  We would then follow up with the question about what scientists see or measure. 
 
For this analysis, we coded only the sections pertaining to students’ responses about how scientists investigate the 
Solar System phenomena.  The whole interview protocol is available upon request.   
 
 

Table 1.  Interview protocol questions 
Interview questions that were followed up with “What did scientists see or measure to figure that out?”: 
1. What are the objects in the Solar System made of? 
2. How does the Moon move?   
3. Do the planets stay where they are or do they move? 
4. How was the Solar System formed? 
5. How does your idea about Solar System formation explain why it is flat? 
6. What was there before the Solar System? 

 
 
Five members of the research team individually coded two different videos each, selected as a representative sample 
across grade levels.  Following this, we refined and finalized the codes by studying and discussing these 10 videos 
(24% of data set) as a group.  The codes had to be general enough that they could be applied to the different contexts 
in which the questions were asked (e.g., about planetary motion or Solar System age).  Codes with similar themes 
were then grouped together into categories.  We used the team’s analysis of this group of interviews to train a single 
member of the team, part of the original team who developed the codes and categories, to apply those codes to the 
remaining interviews.  Once this system of categories and codes had been applied to the interviews, we looked for 
broad patterns about how astronomers gather evidence about the nature of the objects in the Solar System. 
 

RESULTS 
 
In this section, we describe the broad categories we used to code student ideas about how astronomers learn about the 
Solar System, describe the general pattern we saw across the entire sample of student responses, and share some 
individual examples that illustrate our findings. The categories used to organize student ideas and the frequency of 
students with a response in that category are presented in Table 2.  A student was included in a category if they were 
coded as having used a particular response at least one time among the several interview questions listed in Table 1. 
 
 
  



    

   

Table 2.  Top-level categories and frequency of students coded in that category for student ideas about science practices in 
astronomy  

Category (with abbreviations) Frequency coded in the category 
(N=42) 

Scientists find out about <blank> by making or using observations 
(Using Observations) 

34 
(81%) 

Scientists find out about <blank> by space exploration 
(Space Exploration) 

29 
(69%) 

Scientists find out about <blank> through investigations, experiments or some kind of test 
(Investigations) 

19  
(45%) 

Scientists find out about <blank> by making inferences from observations 
(Inferences) 

13 
(31%) 

Scientists find out about <blank> by inferring from a casual model 
(Casual Model) 

5 
(12%) 

There is no way for scientists to find out about <blank> 
(No Way) 

5 
(12%) 

 
 
Within each of these categories was a range of codes that captured student ideas at a finer grain-size. The most common 
responses were found in categories Using Observations and Space Exploration, so we will describe those responses 
in the most detail.  The other categories also included some relevant ideas to understanding students’ thinking about 
astronomical practices, so they are described in more detail in separate sub-sections. 
 
Using Observations 
 
The majority of the students (81%) gave an answer that was coded as Using Observations in one or more of the 
interview questions.  Student ideas in the category of astronomers making or using observations were subdivided 
further using codes for naked eye observations, general telescope use, ground-based telescope use, space-based 
telescope use, astronomers taking multiple observations over time, or taking photographs for later analysis.  While 
these are all practices used by astronomers, many students only provided enough detail to imply that astronomers 
make observations.  Since these codes were generated from the full set of student responses, they did influence our 
perspective of what practices we considered to be the practices of astronomers and planetary scientists. No student in 
our sample included a response that suggested you could observe or investigate the properties of a lunar or Martian 
meteorite, for example, in order to study those objects.  Thus, we did not develop codes in this category or in the 
Investigations category for this type of response.   
 
Students often described scientifically correct ideas about how the planets orbit the Sun and how the Moon orbits the 
Earth; however, when they were asked how scientists know these objects move this way, several implied that simply 
watching the Moon with the naked eye reveals its orbital motion. Although naked eye observations are enough to 
reveal the Moon orbits the Earth, it requires sophisticated spatial reasoning to be able to describe why the Moon’s 
changing appearance is a result of its orbital motion (Plummer, 2014). Over the course of a month, the Moon will rise 
and set at different times while simultaneously changing its phase. The Moon’s changing location with respect to the 
Earth and the Sun is responsible for these observable changes. Only one student suggested the Moon’s orbital motion 
could be inferred from this changing appearance.  However, that type of answer where a student both mentions naked 
eye observations of the Moon and how this changing appearance can be used to infer its motion would be coded as 
either Using Observations + Inferences or Using Observations + Causal Model depending on the detail they provided 
about how they inferred its motion; as shown in Table 2, far fewer of the students gave answers in those additional 
categories.  
 
There were students who demonstrated more sophisticated understanding of how astronomers use observations to 
study planetary motion.  Almost one-third of the group (12 students) provided answers that suggested that taking 
photographs of the planets at several times could reveal their motion, which is still the method used by research 
astronomers today to discover new Solar System objects.   
 



    

   

This dramatic difference between the number of students being coded in the Using Observations category by itself 
compared to that category+Inferences or Causal Model suggests to us that the students interviewed did not understand 
how systematic study of patterns in astronomical observations can be used to infer complex scientific models, such as 
the motion of the Moon and planets. 
 
When the interviewer asked about planetary composition, students employed naive reasoning about how observations 
reveal this planetary property.  For example, several students said you can learn about a planet’s composition by 
looking through a telescope or by taking a photograph.  One student referred to having seen pictures that led them to 
conclude that Uranus is covered with “blue ash”, while Mars is covered with “red ash” in their answer to this prompt.  
However, a typical image of a planet reveals little about its composition. Much of astronomers’ understanding of 
planetary composition comes from analyzing the reflected light from an object in images taken through multiple color 
filters or from collecting a spectrum of a planet from an Earth-based telescope or a robotic orbiter.  Only two college-
level students mentioned spectroscopy as a method to determine a planet’s composition, but struggled to explain in 
detail how a spectrum can reveal an object’s composition.  While it is common for college students in introductory 
astronomy courses to have an experience with spectroscopy in their astronomy class (Slater et al., 2001), this did not 
help these particular students reach a more sophisticated level of explanation for how astronomers determine planetary 
composition.  It is also unlikely that middle and high school students would have had a similar experience with 
spectroscopy and this may explain why none of them were including spectroscopy in their responses.   
 
The results for the category Using Observations indicate that few students have much familiarity with the types of 
observations made by astronomers as they plan and carry out their investigations (practice 3 from the Framework), 
but they made frequent mention of making observations as a general scientific practice.  Thus, it may be productive 
for teachers to build on this aspect of students’ thinking towards a more normative understanding of how astronomers 
make observations. 
 
Space Exploration 
 
More than two-thirds (69%) of students interviewed gave a response coded in Space Exploration.  Student ideas about 
how scientists use space exploration to investigate the Solar System included descriptions of both robotic and human-
crewed spaceflight, and in both cases they discussed missions with and without sample return to Earth.  These 
responses seemed to be influenced by media coverage of the many recent lander and rover missions to Mars as many 
students directly mentioned rovers.  For context, Mars Curiosity landed on Mars in August 2012, and these interviews 
were conducted during the spring and summer of 2012.  Twenty-one of the students (50%) suggested that learning 
planetary composition requires either a robotic mission or a human spaceflight mission to a planet without indicating 
this was possible to do using telescopes.  Only 11 (26%) of the students suggested this could be done with telescopes, 
and three of those responses were from the college students interviewed, who had received direct instruction about 
this concept.  Twelve students (29%) indicated these missions required returning physical samples of the planet to 
Earth, and 8 (19%) of those suggested astronauts were required to obtain the samples.  The NASA Apollo missions 
successfully returned samples of lunar material, two less well-known missions (Stardust and Hayabusa) returned 
microscopic samples from a comet and an asteroid, and the NASA Genesis mission returned particles from the Solar 
wind.  No planetary material has ever been obtained directly from a planet and returned to Earth, although there are 
meteorites that have been discovered serendipitously on Earth that we believe have come from Mars.  Furthermore, 
astronauts have never visited any Solar System object besides the Moon.  Planetary scientists make extensive use of 
meteoritic studies in their work, including the study of meteorites believed to be made of lunar or Martian material.  
No student in our sample made reference to samples found on Earth, though; in every case where a student discussed 
studying a sample they indicated that it had to be physically retrieved by a robot or an astronaut.  We were surprised 
to find, however, that eight students (19%) believe that humans have visited a variety of Solar System bodies beyond 
the Moon.  Although this is a relatively small percentage of the whole sample, the prevalence of this particular naive 
idea about Solar System exploration was revealing, because it seems to indicate that students do not appreciate how 
much of astronomical practice requires study of objects at a large distance.  
 
The prevalence of these non-normative ideas about human spaceflight and sample return seems to indicate that 
students are not being provided with good instructional opportunities to learn how astronomers can infer the 



    

   

composition of an object by analyzing its light.  Instead, students seem to rely on prior experiences in school, such as 
using experiences investigating the composition of a material like a mineral specimen, for example, when asked how 
astronomers learn the composition of Mercury.  Similarly, when asked how scientists know the age of the Solar 
System, one student described visiting a planet and doing an experiment similar to those that are done to date fossils.  
Although this student described an experimental test that could be performed to determine the age of the Solar System, 
he still believed it required an astronaut land on a planet.  Among the eight students who made claims about human 
sample return in their interviews, seven of them were middle-school students.  However, one college student also gave 
this answer, suggesting this conception that astronauts conduct sample return missions is not entirely a function of the 
age or prior instruction of the student. 
 
Category Space Exploration led us to the same conclusion as in category Using Observations; although students 
appealed to rovers and landers, which are used by astronomers in carrying out investigations, they believe that human 
spaceflight and sample return are far more prevalent than they actually are in the field. 
 
Investigations 
 
Student responses were most often coded in the Using Observations and Space Explorations categories by themselves 
and less frequently were coded as both Observations and Investigations or Space Explorations and Investigations but 
rarely Investigations by itself.  With this system of categories, we anticipated this particular association; if a student 
describes an investigation (45% did), that investigation had to rely on some type of observation.  The same type of 
reasoning applies for the Inferences (31%) and Causal Models (12%) categories described in the next two sections.  
For this reason, we consider these last three categories to be more sophisticated ideas than those where a student just 
described an observation without also describing how that observation could, for example, lead to an investigation 
with some evidence-based result.  The variety of responses in these three categories was not as rich as in the 
observations and space exploration categories, and because students were really stretching their understanding, their 
ideas were more often partially correct and did not approach what our team considered to be expert understanding.  
Given that the college students were selected in order to provide more sophisticated answers, we expected them to be 
coded in these categories more frequently, and they were.  However, 14 of the 19 responses coded in the investigations 
category were from middle-school and high-school students. 
 
In the responses coded as Investigations, the ideas students expressed were often similar to those in Observations and 
Space Exploration with only slightly more elaboration that suggested more sophisticated thinking.  For a student 
response to have been identified as an investigation, they had to provide some detail about how their observation 
would provide insight about a planet.  For example, one student described a crewed spaceflight mission to a planet, 
but then added that scientists could, once there, do an experiment like those done on Earth to analyze dinosaur bones.  
So this additional level of detail about the experiment led us to categorize this as an investigation, rather than just an 
observation that somehow provides an answer.  Another idea that a student proposed in this category was to create a 
tether between the Earth and the Moon and to follow the behavior of the tether to determine if the Moon was moving 
or stationary.  While this is implausible because of the difficulty of such an experiment, it was a valid procedure that 
could in theory be performed.  This tether idea is another example of a student proposing a method that is very different 
from the typical astronomy practice of analyzing observations made at a distance with a telescope. 
 
Inferences 
 
We coded as Inferences those examples where students provided details about how a particular observation would 
provide evidence one could use to infer something about a Solar System object.  Among the 13 responses included in 
this category, four were from middle-school students, five from high-school students, and four were given by college 
students.  For example, one partially correct and productive idea was coded as Inferences and was expressed by two 
students; they said that if a planet appears blue in a photo (like Neptune), that this implies it must have water. Students 
familiar with images of Earth from space know that the blue color of Earth is caused by water, and they made this 
connection to Neptune, even though it is incorrect.  This type of inference is indicative of the type of argument that 
astronomers make from the evidence contained in an astronomical image, even though Neptune is blue for a different 
reason.  This is an example of a student showing some understanding of how astronomers analyze and interpret data 



    

   

on astronomical objects, and this could be leveraged by a knowledgeable instructor to move a student to more expert 
understanding of this practice.  
 
Causal models 
 
We coded as Causal Models those student ideas where they explicitly identified a causal model commonly used in 
astronomy as part of their scientific reasoning.  For example, when asked how astronomers know the Moon is in 
motion, one middle-school student discussed a thought experiment that invoked a sophisticated understanding of our 
model for how gravity works to explain how we know the Moon must move. This was coded as Causal Models, 
because it required describing such a model to explain the Moon’s motion. This type of reasoning was rare, though, 
with the only exception being from the college students, most of whom referred to various scientific models in their 
responses.  Besides the one middle-school student described above, none of the other middle- or high-school students 
in the sample invoked this type of reasoning.  Given that developing and using models is one of the other scientific 
practices highlighted in the Framework, these interviews suggest that students are rarely learning this skill in current 
astronomy instruction. 
 

CONCLUSIONS 
 
The interviews that we conducted had the dual goal of informing a learning progression for student understanding of 
Solar System astronomy (Plummer et al., 2015) and determining student ideas about how astronomers engage in 
scientific practices to study the Solar System.  We found that many students had ideas about how astronomers might 
observe or explore using crewed or robotic missions to the worlds in the Solar System.  However, many of their ideas 
did not include insight into how astronomers reach-evidence based conclusions using those observations.  Instead, 
they often described an observation and said that the result of that observation was knowledge about the Solar System 
without providing further detail about how that particular dataset or measurement would be used to create that 
knowledge.  A smaller number of students described observations or space exploration and coupled those descriptions 
with more sophisticated ideas about how astronomers can interpret the data generated from those observations into 
insight about the Solar System.  However, these more sophisticated ideas were often only partially correct and were 
not examples of expert understanding of the practices of astronomy.  It is interesting to note that when students 
described investigations that might be carried out, these often were modeled after the types of investigations they 
might have done or heard about when studying geoscience or physics, such as the dinosaur bone analogy described in 
sub-section 3.3.   
 
The conclusion we draw from these findings is that typical astronomy instruction does not engage students in the 
practices astronomers use when planning and carrying out astronomical investigations or interpreting astronomical 
data obtained from these investigations.  Thus, when students are asked about the practices of astronomy, they draw 
from other cultural experiences or classroom experiences in other science domains to formulate their responses.  
 
When we analyzed the student responses relevant to the practice of planning and carrying out investigations as 
enumerated in the Framework, students seemed to have some familiarity with how astronomers plan and carry out 
one type of astronomical investigations: space exploration.  The idea of sending a human or a robot to obtain a physical 
sample from a planet is a valid method used and has been accomplished for a few selected objects.  However, the 
interviews revealed that students showed very little understanding of how astronomers plan and carry out 
investigations with telescopes.   
 
A few student responses indicated that they were somewhat familiar with methods scientists might use to analyze and 
interpret data.  For example, the color of a planet seen in a photo can indicate its composition and astronomers 
determine one estimate for the age of the Solar System using the same techniques used to determine the age of fossils, 
as several students described in interviews.  Our interview protocol gave students the opportunity to appeal to other 
models of astronomical phenomena in their responses, but very few employed this type of reasoning. 
 
These results have implications for instruction that supports the goals of the Next Generation Science Standards.  
Students need instruction that is designed to reveal the limits of human spaceflight and sample return missions while 



    

   

simultaneously emphasizing how much more astronomers rely on telescopic observations from a large distance to 
study the Solar System.  Sadler (1992) noted in his dissertation that prior to instruction, many high-school students 
believe the stars to be found inside the boundaries of the Solar System.  We saw this alternative conception appear 
among students in this study, too. Thus, it should not be surprising that students who do not understand the scale of 
the Solar System and the stars assume that we can study these objects using technology, like rovers, which has been 
used so successfully to study Mars.  This finding suggests that engaging students in instruction designed to have them 
consider the set of objects that can be studied with a given technique, e.g., robotic orbiters, robotic landers, or 
telescopes, would be an important addition to an astronomy curriculum.  This type of investigation requires students 
to understand the scale of the Solar System and the nearby stars, which is a common topic in many K-12 astronomy 
units and is important to understanding the “Earth’s place in the Universe” disciplinary core idea in the NGSS. 
 
Further, our findings imply that students would likely benefit from more direct instruction in the use of telescopes to 
obtain their own astronomical images of distant objects.  Students may have appealed to physical sample return in 
their interview responses because they had little or no experience with obtaining observations of objects at a distance 
with a telescope equipped with an instrument for capturing data.  The primary barrier to engaging students in optical 
telescope use is that instruction always occurs during the day and astronomical observations with these types of 
telescopes require them to be used after dark, which is not the case with most of the tools used in other scientific 
domains.  Even when students do have the opportunity to do their own astronomical observing with a telescope, this 
is frequently eyepiece observing that does not result in the acquisition of a digital image or spectrum of the object 
being observed.  Thus, most students have limited opportunities to directly experience the techniques used by 
astronomers to collect data and gather evidence.  Slater and colleagues (2014) proposed a hypothetical learning 
progression that can be used to design new curriculum for astronomy classes that incorporate remote or robotic 
telescopes to overcome this barrier to access to telescopes during the typical school day.  This learning progression 
may be useful as a framework for studying student learning in classes with access to telescopes to reveal if direct use 
does indeed influence their ideas about the practices of astronomy.   
 
A promising future direction for research of this type would be to study the results of curriculum interventions that 
engage students in the use of robotic telescopes and how these may influence the fusion of both astronomy content 
and practice.  In particular, we see already how students could benefit significantly from an astronomy curriculum 
which includes an investigation of the types of methods astronomers use to study nearby planets (e.g., Mars), distant 
planets (e.g., Neptune), and stars, which synthesizes the ideas of scale of the Universe with the practices of astronomy.  
While this type of study may reveal how students are contextualizing science practices from the NRC Framework into 
the specific field of astronomy, we know that students will be studying and engaging in these practices in very different 
ways in different sciences across their entire K-12 curriculum. Thus, with additional, similar studies on how students 
are experiencing and learning about these practices in other grades and other sciences, we may be able to understand 
more generally how they synthesize their experiences with practices in different disciplines into a coherent 
understanding of science that crosses disciplines.   
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